Bernhard Keller- Cluster categories for surfaces, after Merlin Christ 系列报告
发布日期:2024-07-09  字号:   【打印

报告地点:翡翠湖校区科教楼B座1710室

报 告 人:Bernhard Keller 教授

工作单位:法国巴黎西岱大学

举办单位:数学学院

报告简介

In a famous article in 2008, Fomin-Shapiro-Thurston associated a cluster algebra to each triangulated marked surface. In 2012, in his thesis under the supervision of Andrei Zelevinsky, Daniel Labardini-Fragoso constructed non degenerate quivers with potential which allow to categorify these algebras using Amiot's construction of the cluster category associated with a quiver with potential. A completely new approach to the construction of these surface cluster categories was developed by Merlin Christ in his thesis under the supervision of Tobias Dyckerhoff in 2022. Given a triangulation of a surface (without punctures), he obtains them by glueing copies of the (relative) 2-Calabi-Yau category associated with a triangle. More intrinsically, he obtains the surface cluster category as the category of global sections of a perverse schober (in the sense of Kapranov-Schechtman) associated to the surface. In this series of lectures, we will give an introduction to this circle of ideas starting from combinatorics and ending up with higher category theory.

报告人简介

Bernhard Keller,巴黎西岱大学教授、中国科学技术大学客座教授、著名代数学家,在微分分次理论、丛理论以及Hochschild同调理论中均做出奠基性的学术成果。Keller教授是法国科学院“索菲·热尔曼”2014年度大奖得主、2024年“科学前沿奖”得主、法国大学研究院资深成员、挪威皇家科学通讯院士、比利时安特卫普大学荣誉博士、国际数学家大会ICM邀请报告人以及美国数学会会士。任国际知名杂志Advances in Mathematics,Forum of Mathematics Pi以及Journal of the European Mathematical Society编委。


学术报告信息(一)

报告题目Cluster categories for surfaces, after Merlin Christ I

报告时间:2024年7月23日(星期二)09:30-11:30


学术报告信息(二)

报告题目: Cluster categories for surfaces, after Merlin Christ II

报告时间:2024年7月24日(星期三)09:30-11:30


学术报告信息(三)

报告题目: Cluster categories for surfaces, after Merlin Christ III

报告时间:2024年7月25日(星期四)09:30-11:30